Verify that: -(-x) = x for:
(i) x = 11/15
(ii) x = -13/17
(i) $x = \frac{11}{15}$
Let $x = \frac{11}{15}$.
Then, the additive inverse of $x$ is $-x$ since $x + (-x) = 0$.
Therefore, the additive inverse of $\frac{11}{15}$ is $-\frac{11}{15}$ because
$\frac{11}{15} + \left(-\frac{11}{15}\right) = 0$.
The same equality shows that the additive inverse of $-\frac{11}{15}$ is $\frac{11}{15}$.
That is, $-(-\frac{11}{15}) = \frac{11}{15}$,
i.e., $-(-x) = x$.
(ii) $x = -\frac{13}{17}$
Let $x = -\frac{13}{17}$.
Then, the additive inverse of $x$ is $-x$ since $x + (-x) = 0$.
Therefore, the additive inverse of $-\frac{13}{17}$ is $\frac{13}{17}$ because
$-\frac{13}{17} + \frac{13}{17} = 0$.
The same equality shows that the additive inverse of $\frac{13}{17}$ is $-\frac{13}{17}$.
That is, $-\left(\frac{13}{17}\right) = -\frac{13}{17}$,
i.e., $-(-x) = x$.
सत्यापित करें कि: -( -x) = x के लिए:
(i) x = 11/15
(ii) x = -13/17
(i) $x = \frac{11}{15}$
मान लीजिए $x = \frac{11}{15}$.
तो $x$ का योगात्मक प्रतिलोम $-x$ है क्योंकि $x + (-x) = 0$.
अतः $\frac{11}{15}$ का योगात्मक प्रतिलोम $-\frac{11}{15}$ है क्योंकि
$\frac{11}{15} + \left(-\frac{11}{15}\right) = 0$.
इसी से यह भी स्पष्ट है कि $-\frac{11}{15}$ का योगात्मक प्रतिलोम $\frac{11}{15}$ है।
अर्थात् $-(-\frac{11}{15}) = \frac{11}{15}$,
यानी $-(-x) = x$.
(ii) $x = -\frac{13}{17}$
मान लीजिए $x = -\frac{13}{17}$.
तो $x$ का योगात्मक प्रतिलोम $-x$ है क्योंकि $x + (-x) = 0$.
अतः $-\frac{13}{17}$ का योगात्मक प्रतिलोम $\frac{13}{17}$ है क्योंकि
$-\frac{13}{17} + \frac{13}{17} = 0$.
इसी से यह भी स्पष्ट है कि $\frac{13}{17}$ का योगात्मक प्रतिलोम $-\frac{13}{17}$ है।
अर्थात् $-\left(\frac{13}{17}\right) = -\frac{13}{17}$,
यानी $-(-x) = x$.
