The sum of three consecutive multiples of 8 is 888. Find the multiples.
Let the three consecutive multiples of 8 be $8x$, $8(x + 1)$ and $8(x + 2)$.
According to the question,
$8x + 8(x + 1) + 8(x + 2) = 888$
$\Rightarrow 8(x + x + 1 + x + 2) = 888$ (Taking 8 as common)
$\Rightarrow 8(3x + 3) = 888$
$\Rightarrow 3x + 3 = \dfrac{888}{8}$
$\Rightarrow 3x + 3 = 111$
$\Rightarrow 3x = 111 - 3$
$\Rightarrow 3x = 108$
$\Rightarrow x = \dfrac{108}{3}$
$\Rightarrow x = 36$
Thus, the three consecutive multiples of 8 are:
$8x = 8 \times 36 = 288$
$8(x + 1) = 8 \times (36 + 1) = 8 \times 37 = 296$
$8(x + 2) = 8 \times (36 + 2) = 8 \times 38 = 304$
तीन क्रमागत 8 के गुणकों का योग 888 है। उन गुणकों को ज्ञात कीजिए।
मान लीजिए तीन क्रमागत 8 के गुणक $8x$, $8(x + 1)$ और $8(x + 2)$ हैं।
प्रश्न के अनुसार,
$8x + 8(x + 1) + 8(x + 2) = 888$
$\Rightarrow 8(x + x + 1 + x + 2) = 888$ (8 को सामान्य रूप में बाहर लिया गया)
$\Rightarrow 8(3x + 3) = 888$
$\Rightarrow 3x + 3 = \dfrac{888}{8}$
$\Rightarrow 3x + 3 = 111$
$\Rightarrow 3x = 111 - 3$
$\Rightarrow 3x = 108$
$\Rightarrow x = \dfrac{108}{3}$
$\Rightarrow x = 36$
अतः तीन क्रमागत 8 के गुणक हैं:
$8x = 8 \times 36 = 288$
$8(x + 1) = 8 \times (36 + 1) = 8 \times 37 = 296$
$8(x + 2) = 8 \times (36 + 2) = 8 \times 38 = 304$
