Class 8MathematicsLinear Equations in One VariableSolve the following equations.

Solve the following equations.

1. $x - 2 = 7$ 

2. $y + 3 = 10$ 

3. $6 = z + 2$ 

4. $\tfrac{3}{7} + x = \tfrac{17}{7}$ 

5. $6x = 12$

6. $\frac{t}{5} = 10$

7. $\frac{2x}{3} = 18$

8. $1.6 = \frac{y}{15}$

9. $7x - 9 = 16$

10. $14y - 8 = 13$

11. $17 + 6p = 9$

12. $\frac{x}{3} + 1 = \tfrac{7}{15}$

1. $x - 2 = 7$

$x - 2 = 7$  
=> $x = 7 + 2$  
=> $x = 9$

2. $y + 3 = 10$

$y + 3 = 10$  
=> $y = 10 - 3$  
=> $y = 7$

3. $6 = z + 2$

$z + 2 = 6$  
=> $z = 6 - 2$  
=> $z = 4$

4. $\tfrac{3}{7} + x = \tfrac{17}{7}$

$x = \tfrac{17}{7} - \tfrac{3}{7}$  
=> $x = \tfrac{14}{7}$  
=> $x = 2$

5. $6x = 12$

$x = \frac{12}{6}$  
=> $x = 2$

6. $\frac{t}{5} = 10$

$t = 10 \times 5$  
=> $t = 50$

7. $\frac{2x}{3} = 18$

$2x = 18 \times 3$  
=> $2x = 54$  
=> $x = \frac{54}{2}$  
=> $x = 27$

8. $1.6 = \frac{y}{15}$

$y = 1.6 \times 15$  
=> $y = 24$

9. $7x - 9 = 16$

$7x = 16 + 9$  
=> $7x = 25$  
=> $x = \frac{25}{7}$

10. $14y - 8 = 13$

$14y = 13 + 8$  
=> $14y = 21$  
=> $y = \frac{21}{14}$  
=> $y = \tfrac{3}{2}$

11. $17 + 6p = 9$

$6p = 9 - 17$  
=> $6p = -8$  
=> $p = \frac{-8}{6}$  
=> $p = -\tfrac{4}{3}$

12. $\frac{x}{3} + 1 = \tfrac{7}{15}$

$\frac{x}{3} = \tfrac{7}{15} - 1$  
=> $\frac{x}{3} = \frac{7-15}{15}$  
=> $\frac{x}{3} = -\tfrac{8}{15}$  
=> $x = -\tfrac{8}{15} \times 3$  
=> $x = -\tfrac{8}{5}$

निम्नलिखित समीकरणों को हल करें।

1. $x - 2 = 7$ 

2. $y + 3 = 10$ 

3. $6 = z + 2$ 

4. $\tfrac{3}{7} + x = \tfrac{17}{7}$ 

5. $6x = 12$

6. $\frac{t}{5} = 10$

7. $\frac{2x}{3} = 18$

8. $1.6 = \frac{y}{15}$

9. $7x - 9 = 16$

10. $14y - 8 = 13$

11. $17 + 6p = 9$

12. $\frac{x}{3} + 1 = \tfrac{7}{15}$

1. $x - 2 = 7$

$x - 2 = 7$  
=> $x = 7 + 2$  
=> $x = 9$

2. $y + 3 = 10$

$y + 3 = 10$  
=> $y = 10 - 3$  
=> $y = 7$

3. $6 = z + 2$

$z + 2 = 6$  
=> $z = 6 - 2$  
=> $z = 4$

4. $\tfrac{3}{7} + x = \tfrac{17}{7}$

$x = \tfrac{17}{7} - \tfrac{3}{7}$  
=> $x = \tfrac{14}{7}$  
=> $x = 2$

5. $6x = 12$

$x = \frac{12}{6}$  
=> $x = 2$

6. $\frac{t}{5} = 10$

$t = 10 \times 5$  
=> $t = 50$

7. $\frac{2x}{3} = 18$

$2x = 18 \times 3$  
=> $2x = 54$  
=> $x = \frac{54}{2}$  
=> $x = 27$

8. $1.6 = \frac{y}{15}$

$y = 1.6 \times 15$  
=> $y = 24$

9. $7x - 9 = 16$

$7x = 16 + 9$  
=> $7x = 25$  
=> $x = \frac{25}{7}$

10. $14y - 8 = 13$

$14y = 13 + 8$  
=> $14y = 21$  
=> $y = \frac{21}{14}$  
=> $y = \tfrac{3}{2}$

11. $17 + 6p = 9$

$6p = 9 - 17$  
=> $6p = -8$  
=> $p = \frac{-8}{6}$  
=> $p = -\tfrac{4}{3}$

12. $\frac{x}{3} + 1 = \tfrac{7}{15}$

$\frac{x}{3} = \tfrac{7}{15} - 1$  
=> $\frac{x}{3} = \frac{7-15}{15}$  
=> $\frac{x}{3} = -\tfrac{8}{15}$  
=> $x = -\tfrac{8}{15} \times 3$  
=> $x = -\tfrac{8}{5}$